If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-998001=0
a = 1; b = 0; c = -998001;
Δ = b2-4ac
Δ = 02-4·1·(-998001)
Δ = 3992004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3992004}=1998$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1998}{2*1}=\frac{-1998}{2} =-999 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1998}{2*1}=\frac{1998}{2} =999 $
| 2/3q=19 | | (6x+19)+7=2x | | (4a-3)(2a+1)=8a^2-2a-3 | | 8^(2x-1)=16 | | 33+p=124 | | .5(x+8)+2.5x=10 | | 5/9h=7 | | (-12)2=(8)x+4 | | H^2-21h-22=0 | | 3/4x-1+1/2x=11 | | T^2+13t-14=0 | | 3(x+1)=-2x+43 | | 6x-20=142 | | 3(8)-8y=24 | | 14+c=19.50 | | K^2-50k=0 | | 4(6x+4)=24+18x | | XxX=300 | | (8•x)+(8•5)=56 | | 12(x/3)+12(5x)=12(1/4) | | 130+1/3x=180 | | -2n^2+8n-8=0 | | -5p^2+5=0 | | 9(9x-12=3x | | a6−4;a=−18 | | y-7^2-12=0 | | -2p^2+3p-3=0 | | -2p2+3p-3=0 | | 1.69x=14.75=4.21x-5.87 | | 864=144(2)^x | | 43+.43x=x | | 13x-5=24x+7 |